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It was shown in a previous paper [Eon (2004). Acta Cryst. A60, 7–18] that the

topological density of a periodic net can be calculated directly from its cycles

figure, a polytope constructed from those cycles of the quotient graph of the net

that are associated with its geodesic lines. It may happen that these lines

generate a grid pattern forming a supercell, a phenomenon that was not

considered in the former derivation of the formula but is common for lattice

nets. An adjustment of the expression is proposed to this effect and applied to

the square and hexagonal lattice nets as well as to the 13 families of cubic lattice

nets.

1. Introduction

The topological density � of a p-periodic net is defined as the limit for

k!1 of the sequence NðkÞ=kp where NðkÞ is the cumulative

number of neighbors of a vertex at a distance at most k (O’Keeffe,

1991). A few years ago, the author derived a formula enabling the

direct calculation of the topological density of a periodic net, with no

need to analyze its full coordination sequence (Eon, 2004). It can be

noted, however, that the method fails in the case of the lattice nets

defined by Delgado-Friedrichs & O’Keeffe (2009). The aim of this

communication is to explain the failure and propose an adjustment

to this formula. Because only slight modifications are required in

comparison with the original derivation of this expression, the main

arguments are quickly sketched below using the case of the square

lattice net (1, 2) as an illustration.

2. Grid pattern of geodesic lines and topological density

The method used for the direct determination of the topological

density of a periodic net is based on the special nature of its

geodesic paths. In any periodic net, there are a small number of

preferred directions along which distances increase the fastest, or

simply may increase (see also Eon, 2007). A geodesic path between

two distant vertices in a 2-periodic net, apart from its two extremities,

may be composed of a sequence of paths along at most two of these

preferred directions. The set of these directions may be used to

construct a polytope that has been called the cycles figure of the

periodic net in Eon (2004). The value of the topological density of

the net derived from an analysis of its cycles figure was shown to be

given by

� ¼ Z
P

�

f ð�Þ=p!; ð1Þ

where Z is the number of vertices in the unit cell, p the periodicity of

the net and f ð�Þ, the frequency of the triangular face � of the cycles

figure, is given by the inverse product of the lengths of the cycles

associated with preferred (shortest) directions in the respective solid

angle. In fact, it was assumed in the proof that only vertices in

adjacent cells (in a geometric, Euclidean sense) may be linked, which

is not true for lattice nets.

Fig. 1 displays the labelled quotient graph of the square lattice net

ðu; vÞ and its cycles figure. The quotient graph is the bouquet of four

loops with voltages (�u; v) and (�v; u). To ensure the connectivity of

the net, u and v must be co-prime integers with uþ v odd and

0< u< v. In this case, each loop defines one of these preferred

directions; there are altogether eight orientations dividing the plane

into eight regions, as shown on the right-hand side of Fig. 1. Geodesic

paths between the origin and any vertex localized in some region are

composed of a sequence of paths along the two orientations deli-

miting this angle. Fig. 2 shows the grid pattern of all possible paths

starting at the origin in the angle fð1; 2Þ; ð�1; 2Þg and running along

lines parallel to 1 2 or �1 2.

It is manifest that not every vertex in the respective angle can be

attained by these paths. A geodesic path to any vertex marked in red

in Fig. 2 must end by a (limited) sequence of edges along other

orientations. We may now associate a supercell with the grid pattern

in each angle: that in angle fð1; 2Þ; ð�1; 2Þg contains four vertices.

Supercells in the angle fð2; 1Þ; ð1; 2Þg contain three vertices, as may be

seen in Fig. 3. Only one vertex per supercell can be reached by a

sequence of paths running along lines parallel to the orientations

delimiting the respective angle. As a result, the above formula

incorrectly predicts a topological density � ¼ 4.

The expression giving the topological density � of a periodic net

may now be corrected if one takes asymptotic properties into

account. It results from the original derivation that one needs only to

include the multiplicity N� of the supercell of the grid pattern asso-

ciated with each face �. This provides the following adjusted

expression:

Figure 1
The labelled quotient graph (left) and cycles figure (right) of the square lattice net
ðu; vÞ.
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� ¼ Z
P

�

½N�f ð�Þ�=p!: ð2Þ

We now apply this expression to lattice nets.

2.1. Topological density of the square lattice net (u, v)

The cycles in the cycles figure of the square lattice nets are all

loops, with length 1; hence the frequency of any face is just 1. The

multiplicity of supercells is given by the determinant of limiting

directions, which are of two kinds:

N1 ¼
u �u

v v

�
�
�
�

�
�
�
� ¼ 2uv; N2 ¼

v u

u v

�
�
�
�

�
�
�
� ¼ v2

� u2: ð3Þ

With one vertex per unit cell, we get

� ¼ ½4ð2uvÞ þ 4ðv2
� u2
Þ�=2 ¼ 2ðv2

þ 2uv� u2
Þ: ð4Þ

2.2. Topological density of the hexagonal lattice net (u, v)

The hexagonal lattice net admits as its quotient graph the bouquet

of six loops with voltages ðu; vÞ; ðv� u;�uÞ; ð�v; u� vÞ; ðv; uÞ,

ð�u; v� uÞ and ðu� v;�vÞ where the connectivity condition

imposes that u and v be co-prime integers with uþ v 6¼ 3n (where n is

an integer) and 0< u< v� u. Fig. 4 shows the cycles figure of this

net.

The multiplicity of supercells is given by the determinant of

limiting directions, which are again of two kinds:

N1 ¼
v� u v

�u u

�
�
�
�

�
�
�
� ¼ 2uv� u2; N2 ¼

v v

u v� u

�
�
�
�

�
�
�
� ¼ v2

� 2uv: ð5Þ

Since the frequency is also 1, we get

� ¼ ½6ð2uv� u2
Þ þ 6ðv2

� 2uvÞ�=2 ¼ 3ðv2
� u2
Þ: ð6Þ

2.3. Topological density of cubic lattice nets

Thirteen families of cubic lattice nets distributed between two

point groups have been listed by Delgado-Friedrichs & O’Keeffe

(2009). We consider in detail the nets ðu; v;wÞ belonging to point

group m3m. The quotient graph of these nets consists of 24 loops with

voltages ð�u;�v;wÞ and six possible permutations, submitted to the

conditions u< v<w with u, v and w co-prime integers. The cycles

figure is a truncated cuboctahedron with six equivalent octagonal

faces, eight equivalent hexagonal faces and 12 equivalent square faces

(vertex symbol 4:6:8). Fig. 5 displays a projection of this cycles figure

along the 001 axis.

Fig. 6 shows a possible triangulation of the square and hexagonal

faces, respectively, marked with the letters a and b in Fig. 5. Notice

the existence of symmetry relations between some triangles. The

corresponding multiplicities are obtained as before (Ni is the multi-

plicity for the triangle i in Fig. 6):

N1 ¼ N2 ¼

v w w

u �u u

w v v

�
�
�
�
�
�

�
�
�
�
�
�
¼ 2uðw2

� v2
Þ; ð7Þ
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Figure 3
Complete view of supercells in the grid pattern of the square lattice net (1, 2).

Figure 4
Cycles figure of the hexagonal lattice net ðu; vÞ.

Figure 2
Grid pattern of the square lattice net (1, 2) in the angle {(1, 2), (�1, 2)}.

Figure 5
Cycles figure of the cubic lattice net ðu; v;wÞ with point group m3m in projection
along 001.



N3 ¼ N4 ¼ N5 ¼

v u u

u w v

w v w

�
�
�
�
�
�

�
�
�
�
�
�
¼ ðuþ vþ wÞðv� uÞðw� vÞ; ð8Þ

N6 ¼

u v w

w u v

v w u

�
�
�
�
�
�

�
�
�
�
�
�
¼ u3
þ v3
þ w3

� 3uvw: ð9Þ

The triangulation of the octagonal face marked c in Fig. 5 is shown in

Fig. 7, with the following multiplicities:

N7 ¼

v v u

�u u v

w w w

�
�
�
�
�
�

�
�
�
�
�
�
¼ 2uwðv� uÞ; ð10Þ

N8 ¼

u �v v

v u �u

w w w

�
�
�
�
�
�

�
�
�
�
�
�
¼ 2wðu2

þ v2
Þ: ð11Þ

Frequencies are again 1 and we get the following expression for the

topological density, after summing over all faces:

� ¼ 4Z½ðuþ vþ wÞ3 � 3v3
� 9uðv2

þ uwÞ�=3: ð12Þ

Now, three kinds of structures are obtained according to the parities

of u, v and w. If one of these figures is odd, the net is primitive and all

lattice points are on the structure. If two are odd, it is face centered

and only contains half the points of the lattice. If they are all odd, the

lattice is body centered and contains but one quarter of the points of

the lattice. We may take this into account by using Z = 1 for primitive

nets, Z = 1/2 for face-centered nets and Z = 1/4 for body-centered

nets.

There exist two degenerate cases of lattice nets ðu; v;wÞ, namely

the nets ð0; v;wÞ and ðu; u;wÞ. In both cases the quotient graph

consists of 12 loops and the cycles figure reduces to a truncated

octahedron (vertex symbol 4:62) in the first case and to a distorted

rhombicuboctahedron (vertex symbol 3:43) in the second case. It may

be verified, however, that the above expression of the topological

density also applies to the degenerate cases; this phenomenon is

clearly due to the geometric origin of the formula.

The remaining families belong to point group m3. The quotient

graph of the nets ðu; v;wÞ consists of 12 loops with voltages

ð�u;�v;wÞ and circular permutations, submitted to the conditions

u< v<w with u, v and w co-prime integers. The cycles figure is also a

distorted rhombicuboctahedron and the topological density is given

by

� ¼ 4Z½ðuþ vþ wÞ
3
� 3wðuþ vÞ

2
� 3uvf2ðuþ vÞ � wg�=3; ð13Þ

where again three kinds of structures are obtained according to the

parities of u, v and w as above: the value of Z must be defined in the

same way according to the nature of the centering. The only degen-

erate lattice nets ð0; v;wÞ admit as their quotient graph the bouquet

of six loops and the cycles figure reduces to a distorted icosahedron

(vertex symbol 35). Again, the general expression given above applies

to the degenerate case.

The above formulae were verified for all possible cases satisfying

w< 6. It is worth mentioning that the special cases of pcu (0, 0, 1), fcu

(0, 1, 1) and bcu (1, 1, 1) belonging to the class m3m equally satisfy

the general expression obtained for the topological density of lattice

nets in this class.

3. Concluding remarks

Both results for square and hexagonal lattice nets are in agreement

with empirical values found by Delgado-Friedrichs & O’Keeffe

(2009) for the first members of these series (i.e. for relatively small

values of u and v). The adjusted formula was applied to obtain an

expression of topological densities for the cubic lattice nets ðu; v;wÞ

in both classes m3m and m3, which was checked for the first members

of both series (w< 6). It is worth noting that the topological density

in cubic lattice nets is primarily determined by the crystal class of the

net and is independent of coordination. It should be emphasized that

the adjusted formula yields the same results as were previously

obtained for more usual nets because supercell multiplicities are

generally equal to one.
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Figure 7
Triangulation of the octagonal face in the cycles figure of the cubic lattice net
ðu; v;wÞ (point group m3m).

Figure 6
Triangulation of the square and hexagonal faces in the cycles figure of the cubic
lattice net ðu; v;wÞ (point group m3m).
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